China's recent 60th Anniversary National Military Parade produced a number of interesting disclosures, including the first public viewing of the complete components of the HQ-9/FD200and HQ-12/KS-1A SAM system batteries. While the HT-233 and H-200 phased array engagement radars have been well exposed previously, the parade did yield plentiful high resolution imagery providing a more accurate perspective on these important systems.
Another important observation is that all of the components of the HQ-9 and HQ-12 SAM systems are designed from the outset for hide, shoot and scoot operations, to maximise opportunities to evade SEAD/DEAD tasked aircraft. This is an important advance for the PLA IADS, which even a decade ago relied primarily on the static HQ-2 Guideline system, typically operated from fixed semi-hardened SAM sites. With the PLA IADS now replacing HQ-2 batteries with a mix of HQ-9, S-300PMU/PMU1/PMU2 and HQ-12, the SAM force has wholly transitioned to systems with excellent, if not exceptional mobility, by contemporary standards.
While the HQ-12 TEL has been displayed frequently in public, the HQ-9 TEL has until recently been known only from poor quality Chinese media imagery. High quality imagery shows a design closely modelled on the Russian S-300PM/PMU 5P85SU/SE TEL design, hosted on the Taian TAS-5380 8 x 8 chassis, itself a derivative of the MAZ-543 Uragan/Kashalot. An important difference is the absence of an automatically deployed and stowed telescoping radio datalink mast, requiring a two man crew to deploy or stow the TEL datalink mast. For rapid hide, shoot and scoot operations this will impact the repeatability of stow and deploy times.
Sources in Asia claim that HQ-9 battery components can be networked using fixed optical fibre cables, microwave directional line of sight links, or other RF datalinking channels. However, until HQ-9 TELs and HT-233 engagement radars are equipped with organic telescoping or folding RF datalink antenna/mast systems, the full mobility of the basic self-propelled configurations employed will not be exploited. Retrofit of such technology, given the availability of extant Russian terminal hardware on 30N6E Tombstone and 5P85TE TELs, is not a challenging task in reverse engineering.
Another important observation is that all of the components of the HQ-9 and HQ-12 SAM systems are designed from the outset for hide, shoot and scoot operations, to maximise opportunities to evade SEAD/DEAD tasked aircraft. This is an important advance for the PLA IADS, which even a decade ago relied primarily on the static HQ-2 Guideline system, typically operated from fixed semi-hardened SAM sites. With the PLA IADS now replacing HQ-2 batteries with a mix of HQ-9, S-300PMU/PMU1/PMU2 and HQ-12, the SAM force has wholly transitioned to systems with excellent, if not exceptional mobility, by contemporary standards.
While the HQ-12 TEL has been displayed frequently in public, the HQ-9 TEL has until recently been known only from poor quality Chinese media imagery. High quality imagery shows a design closely modelled on the Russian S-300PM/PMU 5P85SU/SE TEL design, hosted on the Taian TAS-5380 8 x 8 chassis, itself a derivative of the MAZ-543 Uragan/Kashalot. An important difference is the absence of an automatically deployed and stowed telescoping radio datalink mast, requiring a two man crew to deploy or stow the TEL datalink mast. For rapid hide, shoot and scoot operations this will impact the repeatability of stow and deploy times.
Sources in Asia claim that HQ-9 battery components can be networked using fixed optical fibre cables, microwave directional line of sight links, or other RF datalinking channels. However, until HQ-9 TELs and HT-233 engagement radars are equipped with organic telescoping or folding RF datalink antenna/mast systems, the full mobility of the basic self-propelled configurations employed will not be exploited. Retrofit of such technology, given the availability of extant Russian terminal hardware on 30N6E Tombstone and 5P85TE TELs, is not a challenging task in reverse engineering.
0 comments:
Post a Comment